Verified Numerical Computation and kv Library

Masahide Kashiwagi
kashi@waseda. jp
http://verifiedby.me/

Waseda University, Japan

(Mar. 15, 2025)

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

http://verifiedby.me/

error in numerical computation
verified numerical computation
interval arithmetic

Krawczyk method

introduction of kv library

e outline

o interval arithmetic

e automatic differentiation, double-double arithmeric, mpfr, affine
arithmeric

e power series arithmetic (psa)

e quadrature

e ordinary differential equations

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Numerical Computation

Equations can not be solved

Human beings have discovered a methodology to describe phenomena by
equations, which made it possible to create various technologies and
predict the future. However, almost all of equations can not be solved in
the form of simple expressions.

Numerical Computation

To solve "mathematical problems that can not be solved analytically” by
computer.

@ Numerical calculations are used in various fields along with the
development of computers, which is indispensable to modern society.
o weather forecast, strength calculation of buildings, car crashes,
chemical reaction, fluid simulation
o calculation of trajectories of celestial bodies, rockets, etc.
e computer graphics
@ The world's first computer, ENIAC, was depeloped with the obiective
of numerical calculation of missile trajectory.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Representation of real numbers in computer (IEEE 754
double precision floating point number)

representation of real numbers

@ store real numbers in the form of "(number close to 1) x (power of
radix)” such as 6.02 x 1023

@ stored in binary numbers and use 64bits=8bytes.

@ 64bits are divided as follows:

[s [ew e \w [eo [[ms1 [mso [- [mo]
e : binary integer (e = Ze,—Qi),

. binary fraction (m = Zm 20752)

corresponds to the value represented by the following:
(=1)% x (1 +m) x 267108

@ accuracy(significant digit) is about 16 digits.
2752 ~ 222 x 10716 ~ 1071565

. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Detail of IEEE 754 double precision format

Detail of IEEE 754 double precision format

[slewle| - [eo] ms|msof--|mo]
10 51
e= Zeﬂi, m = Zmﬂi_m
i=0 i=0
H m =0 ‘ m # 0 ‘
e=0 +0 ‘ (—1)* x (0 +m) x 271922 (denormalized number)
1 <e <2046 (—1)° x (1 4+ m) x 271923 (normalized number)
e = 2047 +oo | NaN (Not a Number)

_21024 _271022 _271074 271074 271022 21024

’ —00 ‘ normal ‘ denorm ‘ —0 \ +0 ‘ denorm ‘ normal ‘ 00 ‘

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Rounding Error

Rounding Error

@ Since the siginificant digit is about 16 digits, when we calculate 1 + 3
, for example, we have some error as:

1+3 =0.3333333333333333148.. ..

This is called rounding error.

@ Since binary numbers are used, even 1+ 10 = 0.1, an error occurs as:
1 <10 = 0.100000000000000005551 . . .

@ The error is no so large if it is calculated only once, but if errors
accumulate, the error may expand more than we imagine.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

rounding error of quadratic equations

quadratic equation

The solution of the quadratic equation az? 4 bx + ¢ = 0 can be written as:

. —b+ Vb2 —4ac
a 2a

example of large errors

a=1,b=10%, ¢=10"

—b+ Vb2 —4
@ (The quadratic formula) + 5 2 = 0125
a
2c
@ (rationalizing numerator = —0.10000000000000002
(=) —b— Vb2 —4ac

v,

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

error of linear equations

64919121 —159018721\ [z\ (1
41869520.5 —102558961) \y/ \0

linear equation

true solution solution by Gaussian elimination

T\ _ 205117922 z\ _ (106018308.0071325
Y 83739041 y) \43281793.001783125

calculating residual of wrong solution- - -

(64919121 —159018721) <106018308.0071325> _ <1> _ (0) -

41869520.5 —102558961 /) \ 43281793.001783125 0

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Rump’s Example

Rump’s Example
Calculate the following expression for a = 77617 b = 33096 :

(333.75 — a)b0 + a*(11ab* — 121b% — 2) + 5.5° + a/(2b)

Numerical Results

1.17260396480560302734375 (float)
1.1726039400531786949244406059733592 (double)
1.1726039400531786318588349045201801 (double-double)
1.1726039400531786318588349045201838 (mpfrll3)
1.1726039400531786318588349045201838 (binary128)
-0.82739605994682136814116509547981629 (mpfrl50) <—true value

| \

From float (23bits) to binary128 (113bits), depending on the accuracy, it
looks like it is calculated correctly, but it is actually wrong. We can see the
true value with 150bits calculation.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Patriot Missile Accedent in the Gulf War

http://www-users.math.umn.edu/~arnold/disasters/patriot.html

https://www.gao.gov/assets/220/215614.pdf

In the Gulf war, the Patriot missile of USA was used for the interception of
the Iragi Scud missile. However, due to a small error of the internal
computer related to the representation of "0.1 second”, the Patriot missile
failed to track and intercept the Scud missile.

@ Date: Feb. 25, 1991
@ Place: Dharan, Saudi Arabia
@ Damage: 28 soldiers killed, around 100 other people injured

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 10/94

http://www-users.math.umn.edu/~arnold/disasters/patriot.html
https://www.gao.gov/assets/220/215614.pdf

Verified Numerical Computation

Verified Numerical Computation

Numerical computation method which calculates not only approximate
solution but mathematically rigorous error estimation of the solution.

\

Required Technology
@ Interval Arithmeric (estimates the rounding error in the calculation
using round-up and round-down. also evaluates the image of the
function.)
e Fixed Point Theorem (By confirming the sufficient condition of the
fixed point theorem by interval arithmetic, we guarantee the existence
and the range of the solution of the equation.)

@ Automatic Differentiation is also important.

A\

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Interval Arithmetic (1/7)

Interval Arithmeric

@ Interval arithmetic is the most fundamental technique for verified
numerical computation.

@ For example, if m ~ 3.14, it is approximation, but if 7 € [3.14, 3.15],
it is correct information.

@ In interval arithmetic, numerical values are expressed by closed
interval X = [a, b] where the endpoints are floating point numbers
that can be represented by a computer.

@ In interval arithmeric, the operation between intervals is performed so
as to include all possible calculation results for the values included in
the interval operand.

@ In interval arithmeric, generally, directed rounding defined by IEEE
754 standard is used.

@ There are two rolls of interval arithmeric, estimation of rounding error
and evaluation of range of function.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Interval Arithmetic (2/7)

Rounding mode of IEEE754

@ round to nearest: Default rounding mode. rounding to the nearest
representable floating point number.

@ round toward +oo: rounding upward.
@ round toward —oo: rounding downward.

@ round toward 0: chop rounding.

In the interval arithmeric, the lower bound is calculated by rounding
downward and the upper bound is calculated by rounding upward, so that
the calculation result inflates outward.

down (round
toward —oo)

+00

up (round
toward 4-00)

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 13 /94

Interval Arithmeric (3/7)

o X =a,b,Y =[c,d]
@ - and - means “round to —o0” and “round to 400", respectively. J
o Addition X +Y = [a+c, b+d] @ Subtraction X —Y = [a—d, b—]
@ Multiplication X xY =
d<0 c<0,d>0 c>0
b<0 [bxd,axc] [axd, axc] [axd,bxc]
a<0,b>0 | [bxc,axc] | [min(axd,bxc), max(axc,bxd)] | [axd,bxd]
a>0 [bxc, axd] [bxc, bxd] [axc, bxd]
d<0 c>0
b<0 b/c,a/d .b/d -
o Division X/¥ — [b/c aé] | la/c [| (defined only
a<0,b>0|[b/d,a/d] | [a/c,b/c] whenY % 0)
a>0 [b/d, a/c| la/d, b/c]
e Square Root VX = [\/a, V|

. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 14 /94

Interval Arithmetic (4/7)

If we calculate (1 + 3) x 3 with 3-digits decimal number - - -

o Numerical Calculation (Not @ Interval Arithmetic
Verified) Start from an interval with no width.
1+3=0.333 [1,1] = [3,3] = [0.333,0.334]
0.333 x 3 = 0.999 [0.333,0.334] x [3,3] = [0.999, 1.01]
Error due to rounding off is Calculation proceeds so as to always
obserbed. include the true value in the interval.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 15/94

Solving previous example by interval arithmetic

quadratic equation

The solution of the quadratic equation az? 4 bx + ¢ = 0 can be written as:

. —b+ Vb2 —4ac
- 2a

example of large errors

a=1,b=10%, ¢c=10"

—b+Vb%—4
o (The quadratic formula) —— 3 4 — [-0.1875, —0.0625)]
a
o (rationalizing numerator) 2c
| 1Z1 u r =
g —b—Vb? — 4ac

[—0.10000000000000004, —0.099999999999999991]

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

How to change rounding direction

@ |EEE 754 Standard requests that the rounding direction can be changed.
However, the method of changing rounding direction differs on CPU and
compiler.

@ In the case of Intel X86 cpu, the method of changing rounding direction is
complicated, for example, the method is different between FPU and SSE2.

@ Recently, since C99 compliant compiler became popular, using fenv.h and
fesetround absorbs the hardware difference of changing rounding direction.

(.. j std ::cout << z << std::endl;
ﬁ!nc:uje <|fostre'fm> fesetround (FE_LUPWARD) ;
include <fenv.h> z:x/y;
int main() std :: cout << z << std ::endl;
double x=1, y=10, z; k}

std :: cout. precision(17);

fesetround (FE_TONEAREST); (0.10000000000000001
z=x/y; 0.099999999999999991
std ::cout << z << std::endl; 0.10000000000000001
fesetround (FE_DOWNWARD) ;

z=x/y;

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Interval Arithmeric (6/7)

Things to be careful on implementation of interval arithmetic

@ (Input Error) We can not control rounding direction of constants in
program text (for example, "0.1" of double x = 0.1;) because the
conversion from the decimal string to the binary number is executed
at compile time.

@ (Output Error) Similarly, we can not control rounding direction in the
display of numbers such as "std::cout << x << std::endl;".

o (Compiler Optimization) Compiler optimizations such as "-O3" may
change the order of calculations, and the rounding direction may not
be changed as intended. = necessary to suppress optimization
appropriately by using volatile etc.

e (Mathematical Functions) Only sqrt has guaranteed accuracy and
can change the rounding direction, and mathematical functions other
than sqrt can not be trusted at all.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Interval Arithmeric (7/7)

Overestimation of interval arithmetic

Although the interval operation certainly includes true values, the interval width
may become wider than expected.

f(x) =2® — 22, x€]0.9,1.1]

The result of the interval arithmetic is [—1.39, —0.59], but the true image is
[—1,-0.99] .

Supressing overestimation

Mean Value Form Rather than evaluationg f(I) directly, is is often better to
calculate

flo)+ f(DU = ¢)
with ¢ = mid(7) .
Affine Arithmetic (later mentioned)

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Krawczyk method (Krawczyk(1969), Kahan(1968))

A Method to guarantee the existence of a solution of nonlinear equation
f®)y=0, f:R*—=R".
Krawczyk method

Let I C R™ be interval vector (candidate set), c = mid(I), R~ f'(¢)™! , E
be identity matrix, and

K(I)=c—Rf(c)+(E-Rf ()T - ¢)

If K(I) C int(I) then there exists a unique solution of f(x) =0in I . (int([):
interior of I)

Apply mean value form and contraction mapping theorem to
g() = — Rf() .

Krawczyk method has f/(I) (interval matrix which encloses all Jacobi matrix
of f in I) = Automatic differentiation is required

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Example of Krawczyk method

i +23-1=0
Ty — T2 =

Show existence of a solution of equation { in interval vector

;_ (106,08
~ \[0.6,0.8]
Calculation Example

(o7 (04 05\ _ Lo
Let c = <0.7) , R = (0.4 _0.5> ~ f'(¢)=" . Then

(D) = ([1.2,11.6] [1.2_,11,6]> o

.

, (10.68,0.736]\ . ([0.6,0.8]
c= R+ (E-RIAD)I - = ([0.68,0.736]) < mt <[0.6,0.8})

. This guarantees existence of unique solution.

The advantage of Krawczyk method is that it is composed by only automatic
procedures.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Application of Krawczyk method

Guaranteeing the existence of the true solution based on the approximate

solution ¢

For R~ f'(¢)™! and r = 2||[Rf(c)| (twice of the modification of Newton
method), use
[_1’ 1]
I=c+r :
[_17 1]

as the candidate set for Krawczyk method.

Finding all solutions of nonlinear equations in interval vector [
Apply two theorems:

o Existence theorem in interval vector I (Krawczyk method)
o Non-Existence theorem in interval vector I (for example, if f(I) # 0 then
there is no solution in I)

for interval I, and divide the interval recursively until one of the theorems
holds.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

kv — a C++ library for verified numerical computation

Overview of kv library
@ Available to download at http://verifiedby.me/kv/.

@ Development of the library began in autumn 2007. The initial release
of the library was Sep. 18, 2013. The latest release is version 0.4.58.

@ Written in C++. The boost C++ Library is required.

@ Header-only. kv library is designed to work without "install” but only
with the header files in itself.

@ Open source. If we assert that the result of verified numerical
computation is ‘proof’, all programs used for computation must be
public.

@ Data type of numbers in the calculation is not restrected to "double"”.
Data type can be easily changed using "template” feature in C4++.

v

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

http://verifiedby.me/kv/

Numeric Data types available in kv library

Numeric data types available in kv library

@ double

e interval (with many verified mathematical functions)
double-double

MPFR wrapper

complex

automatic differentiation

affine arithmeric

Power Series Arithmeric (PSA)

and these combinations

combination of numeric data types

For example, the type ‘autodif<interval<dd>>' means ‘autodif using
interval using double-double’.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Applications in kv library

applications in kv library

o verified solution of nonlinear equations by Krawczyk method
finding all solutions of nonlinear equations

initial value problems of ordinary differential equations
boundary value problems of ordinary differential equations
numerical integration for 1d and 2d functions

numerical integration for functions with endpoint singularity
special functions such as gamma, bessel, etc.

verification of optimization problem by KKT equation

etc.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

kv web page (in Japanese)

e] wwiroceonn g

mkv-c-w:&bwmnu~lslﬁﬁ/ﬁlﬁ%175 y —

280 15 BG4 R SO MBEO

1.nws

1 wamnon
-

Wm0 ik R

M. Kashiwagi (Waseda Univ.)

http://verifiedby.me/kv/

kv web page (in English)

||

m kv-a Ce+ Library for Verified Numerical Computation

http://verifiedby.me/kv/index-e.html

@ For a program of the same notation (below is an exmaple),

y = (x+1) * (x-2) + log(x); J

we would like to use different numeric types that perform various
special operations such as:

e double o PSA

o interval o MPFR

o autodif e interval<MPFR>
e autodif<interval> e etc.

using operator-overloading.

@ Using ‘dynamically typed languages’ such as python, ruby, matlab will
cause speed down because type determination is done at run time.

@ Using C++'s template feature, we can describe a program with
‘generic type' (without assuming data type), and do not speed down
because all type determination is completed at compile time.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

C++ 's template function

without template

-
#include <iostream>

void swap(int& a, int& b) {

int tmp;
tmp = a;
a=b;
b = tmp;

}

void swap(double& a, double& b) {
double tmp;
tmp = a;
a=b;
b = tmp;

}

int main()

{
int a=1, b=2;

swap(a, b); // swap int value
std:icout << a << " " << b << "\n";

double x=1., y=2.;

swap(x, y); // swap double value
std:icout << x << " " <<y << "\n";

M. Kashiwagi (Waseda Univ.

Verified Numerical Computation a

with template
-
#include <iostream>
template <class T> void swap(T& a, T& b) {
T tmp;
tmp = a;
a=b;
b = tmp;
}
int main()
{
int a=1, b=2;
swap(a, b); // swap int value
std::icout << a << " " << b << "\n";
double x=1., y=2;
swap(x, y); // swap double value
stdircout << x << " " << y << "\n";
}
.

(Mar. 15, 2

C++ 's template class

without template

#include <iostream>

class pair_int {
int a, b;
public:
pair_int(int x,

int y) : a(x), b(y) {}

void print() {
std:icout << a << " "
}

IE

class pair_double {
double a, b;
public:

pair_double(double x, double y) : a(x)
18

void print() {
std::cout << a << "
}

s

int main()

{
pair_int p(1, 2);
p.print();

M. Kashiwagi (Waseda Uni

<< b << "\n";

" << b << "\n";

. b(y)

Verified Numerical Computation and kv Libra

pair_double q(1., 2.);
q.print();

with template

#include <iostream>

template <class T> class pair {

T a, b;
public:
pair(T x, Ty) : a(x), b(y) {}
void print() {
std:icout << a << " " << b << "\n",
}
s
int main()
{

pair<int> p(1, 2);
p.print();

pair<double> q(1., 2.);
q.print();

(Mar. 15, 20

Matrix and Vector calculation

boost.ublas

@ Matrix and vector calculation in kv library depends on the ‘ublas’ contained in
the boost library (http://www.boost.org/).

@ Since ublas is a template library, it is possible to handle interval matrix/vector
etc. naturally.

@ Although the name is ‘ublas’, it means that it has all functions of BLAS, it is
not fast like BLAS.

Numerical Linear Algebra in kv Library
@ In numerical verification of linear computation, for example, by computing
matrix multiplication C' = A x B like
@ change rounding mode to downward and compute C = A x B
@ change rounding mode to upward and compute C' = A x B
we can extremely reduce the number of changing rounding mode and we can
use fast ready-made BLAS libraries for matrix multiplication.
@ Since the kv library emphasized the natural availability of numeric types other
than double, the current version does not use such kind of techniques at all.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

http://www.boost.org/

Interval Arithmetic (interval)

@ provide inf-sup type interval arithmetic.

@ provide verified mathematical functions such as exp, log, sin, cos, tan,
sinh, cosh, tanh, asin, acos, atan, asinh, acosh, atanh, expml, loglp,
abs, pow .

@ provide mutual conversion function between double and decimal
strings with directed rounding.

@ The types of lower/upper bounds are templates, and we can use
numeric types other than double such as double-double, MPFR.

@ The supported environment is that C99 fesetround can be used. We
can also use some options which enable

SSE2 of X86 CPU

emulation of rounded arithmetic using only nearest rounding

AVX-512 of newest Intel CPU

FMA instruction

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 32/94

Sample program of interval arithmetic

1000
1

Calculate s = kzl -

#include <kv/interval.hpp> // interval arithmeric
#include <kv/rdouble.hpp> // define rounded arithmetic for double

int main()
kv::interval <double> s, x;

std :: cout. precision (17);

s = 0;
for (int i=1; i<=1000; i++) {
X = i;
s += 1/x;
}
std::cout << s << "\n";
}
V.
[7.485470860549956,7.4854708605508238]
y

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 202

How to use

$ Is

kv—0.4.52.tar.gz

$ tar xfz kv—0.4.52.tar.gz

$ Is

kv—0.4.52/ kv—0.4.52.tar.gz

$ cd kv—0.4.52

$ Is

LICENSE. txt README. txt example kv test

Place the kv directory under the favorite directory.
(e.g. /usr/local/include/)

compile & run

$ Is

interval.cc kv/

$ o+ —1. —O3 interval.cc
$./a.out

[7.485470860549956,7.4854708605508238]

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

sample program of double-double interval arithmetic

1000
Calculate s = E z via double-double.
k=1
#include <kv/interval.hpp> // interval arithmeric
#include <kv/dd.hpp> // double—double
#include <kv/rdd.hpp> // define rounded arithmetic for dd
int main()
kv::interval<kv::dd> s, x;

std :: cout. precision(34);

s = 0;
for (int i=1; i<=1000; i++) {
X = i;
s += 1/x;
}
std::cout << s << "\n";
}
y
[7.485470860550344912656518204308257,7.485470860550344912656518204360964]
y

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 202

double-double(dd)

@ twosum: an algorithm to convert sum of two floating point numbers
to the sum of two non-overlapping floating point numbers.
(e.g. : 1234 + 5.432 — 1239 4 0.432)

@ twoproduct: an algorithm to convert product of two floating point
numbers to the sum of two non-overlapping floating point numbers.
(e.g. : 1234 x 5.432 — 6703 + 0.088)

@ By using twosum and twoproduct, it is possible to realize a pseudo
quadruple precision arithmeric using two double precision numbers.
@ dd.hpp provides approximate calculation by double-double arithmetic.

@ Using dd.hpp and rdd.hpp (define directed rounding for
double-double arithmetic), it is possible to realize quadruple precision
interval arithmetic.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 36 /94

@ a simple wrapper of the MPFR library to perform high precision
floating point airhtmetic.

o mpfr.hpp provides approximate calculation by MPFR.
@ e.g. kv::mpfr<106> means MPFR number with 106bit mantissa.

@ Using mpfr.hpp and rmpfr.hpp (define directed rounding for
MPFR), it is possible to realize interval arithmetic with MPFR.
However, in the kv libary, only addition, subtraction, multiplication,
division and square root of MPFR are used, and excellent
mathematical functions of MPFR are not used.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Policy of implementing interaval arithmetic

o In IEEE 754 standard, only addition, subtraction, multiplication,
divison and square root can trust and can change the rounding
direction.

@ We implemented interval arithmetic using only addition, subtraction,
multiplication, division and square root.

o Verified interval mathematical functions are also implemented using
only addition, subtraction, multiplication, division and square root.

o If addition, subtraction, multiplication, division and square root with
directed rounding are implemented for some numeric type, we can use
the number instead of "double”. That is why dd and mpfr can be
used for the endpoints of interval.

. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Mechanism for switching internal type of interval

arithmetic (1)

@ Currently, the kv library supports three types of interval arithmetic:
interval<double>, interval<dd> and interval<mpfr<N>>.

@ For each type, double, dd and mpfr<N>, there are different ways to perform
directed rounding. How to implement directed rounding for unknown types?

Define method of directed rounding according to the interval type

@ template class rop<T> (rounding operations) is provided, which has 10 member
functions for addition, subtraction, multiplication, division and square root with
upward and downward rounding (add_up, mul_down, etc.). The functions defined
here do not use directed rounding and cannot be used for verified numerical
computation as it is.

@ For the types double, dd, mpfr<N>, which we want to use as internal types for
interval arithmetic, we specialize the template class by creating class
rop<double>, class rop<dd>, class rop<mpfr<N>>, and describe the 10
different arithmetic methods for each type in detail. rdouble.hpp, rdd.hpp,
rmpfr.hpp are examples of this.

@ Mathematical functions are implemented using only these ten types of operations.
Therefore, if you use a high-precision type for internal type of interval, you will
automatically get high-precision (according to the type) mathematical functions.

@ Types other than double, dd, mpfr<N> can also be used as internal type of
interval arithmetic by creating a file that specializes the template class similarly.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 20

Mechanism for switching internal type of interval

arithmetic (2

Excerpt from interval.hpp

template <class T> struct rop {
static T add_up(const T& x, const T&y) {
return x +y;

i
static T add_down(const T& x, const T& y) {
return x +y

}
static T sub_up(const T& x, const T& y) {
return x —

}
static T sub_down(const T& x, const T& y) {
return x — y;

}
static T mul_up(const T& x, const T& y) {
return x = y;

}

static T mul_down(const T& x, const T& y) {
return x = y;

i

static T div_up(const T& x, const T&y) {
return x / y:

}
static T div_down(const T& x, const T& y) {
return x / y;

i
static T sqri_up(const T& x) {
return sqrt(x);

}
static T sqrt_down(const T& x) {
return sqrt(x);

}
¥
template <class T> class interval {
inf, sup;
public:

interval () {
sup = 0.;

template <class C> explicit interval(const C& x

M. Kashiwag

(Waseda Univ.

)|
inf = x;
sup = x;

template <class Cl, class C2> interval(const C1
& x, const C2& y) {
inf = x;
sup =y;

i

friend interval operator+(const interval& x,
const interval& y) {
interval r;
roinf = rop<T>::add_down(x.inf, y.inf);
r.sup = rop<T>::add_up(x.sup, y.sup);
return r;

t

template <class C> friend interval operator(
const interval& x, const G y) {
interval r;
roinf = rop<T>::add_down(x.inf, T(y)):
r.sup = rop<T>::add_up(x.sup, T(y));:
return r;

¥

template <class C> friend interval operator+(
const G x, const interval& y) {
interval r;
roinf = rop<T>::add_down(T(x), y.inf);
r.sup = rop<T>::add_up(T(x), y.sup);
return r;

i

friend interval operator—(const interval& x,
const intervald y
interval r;
r.inf = rop<T>::sub_down(x.inf, y.sup);
rosup = rop<T>::sub_up(x.sup, y.inf);
return r;

(Mar. 15, 2

Mechanism for switching internal type of interval

arithmetic (3)

Excerpt from rdouble.hpp

template <> struct rop <double> {
static double add_up(const double& x, const
double& y) {
volatile double r, x1 =x, yl =y;
(ese\vound(FE UPWARD) ;
r=x1+
Fe:etround(FE TONEAREST)
return r;

static double add_down(const double& x, const
double& y) {
volatile double r, x1 = x, yl = —y;
fesetround(FEiDO»/\N/\/Am
r=xl+y
fesetround (FEJONEAREST) ;
return r;

static double sub_up(const double& x, const
double& y) {
volatile double r, x1 = x, yl =y;
fesetround (FE_UPWARD)
r=xl—yl;
fesetround (FE_TONEAREST) ;
return r;

static double sub_down(const double& x, const
double& y) {
volatile double r, x1 = x, yl = —y;
fesetround(l'E DOWNWARD) ;
r=xl—
Fesetvound(FE TONEAREST) ;
return r;

static double mul_up(const double& x, const
double& y)
volatile double r, xl = x, yl
fesetround (FE_UPWARD) ;
r=xl#yl;
fesetround (FE_TONEAREST) ;
return r;

static double mul_down(const double& x, const
double& y) {
volatile double r, x1 =
fesetround (FE_DOWNWARD)
r=xlx yl;
fesetround (FE_TONEAREST) ;
return r;

x, yl =y;

static double div_up(const double& x, const
double& y) {
volatile double r, xI = x, yl =y;
(eselround(FE UPWARD) ;
r=xl/y
lese(round (F[TONEAREST) ;
return r;

static double div_down(const double& x, const
double& y) {
volatile double r, x1 = x, yl = y;
fesetrmmd(FE DOWNWARD,
r=xl
fesetround (FE TONEAREST) ;
return r;

static double sqrt_up(const double& x) {
volatile double r, x1 = x;
fesetround (FE_UPWARD) ;
r = sqrt(x1);
fesetround (FE_TONEAREST) ;
return r;

}

static double sqrt_down(const double& x) {
volatile double r, x1 = x;
fesetrmmd(FE DOWNWARD) ;
r = sqrt(x1);
fesetround (FE_TONEAREST) ;
return r;

(Mar. 15, 2

Verification of nonlinear equations by Krawczyk's method

22 —y—-1=0

Prove existence of solution to (@—2%—y—1=0

near (1.01,0.01) .

#include <kv/kraw—approx.hpp>
namespace ub = boost::numeric::ublas; // for abbreviation
struct Func { // define function object of f
template <class T> ub::vector<T> operator() (const ub::vector<>& x) {
ub::vector<T> y(2);
¥(0) = x(0) * x(0) — x(1) — 1.;
y(1) = (x(0) — 2.) * (x(0) — 2.) — x(1) — 1.;
return y;

}

int main() {

::vector<double> x;

vector< kv::interval<double> > ix;

std ::cout. precision (17);

x.resize(2);

x(0) = 1.01; x(1) = 0.01; // initial value of Newton’'s method

kv ::krawczyk_approx(Func(), x, ix, 3, 1); // after 3 Newton iteration, check existence of the
true solution near the approximate solution.

}
o’
newton0: [2]([1,1],[—9.9999999999853679e—05,—9.9999999999853678e —05])
newtonl: [2]([1,1],[2.4286128663675299e—17,2.42861286636753¢—17])
newton2: [2]([1,1],[—3.1225022567582528e—17,—3.1225022567582527e —17])
1: [2]([0.99999999999999911,1.0000000000000009] ,[—3.9204750557075841e—16,3.2959746043559335e —16])
K: [2]([0.99999999999999977,1.0000000000000005],[—3.1225022567584106e—17,1.9081958235745036e—16])
”

M. Kashiwagi (Waseda Univ. Verified Numerical Computation and kv Libra

Finding all solutions of nonlinear equation

zy —cosy =0

Find all solutions of T—y+1=0

in 2,y € [~1000, 1000] .

#include <kv/allsol .hpp>
namespace ub = boost::numeric:: ublas;
struct Func { // define function object of f
template <class T> ub::vector<T> operator() (const ub::vector<T>& x) {
ub::vector<T> y(2);
y(0) = x(0) * x(1) — cos(x(1));
v(1) = x(0) — x(1) + 1;
return y;

)
ir;t main ()

ub::vector< kv::interval<double> > x(2);

std ::cout. precision(17);

x(0) = kv::interval <double>(—1000, 1000);
x(1) = kv::interval <double>(—1000, 1000);
kv::allsol (Func(), x); // find all solutions

[2]([—1.964111328125,—1.47607421875],[—0.66169175448117435,—0.47607421875]) (ex)

[2] ([—1.5500093499272621,—1.5500093499272609],[—0.55000934992726192,—0.55000934992726113]) (ex:
improved)

[2]([—0.011962890625,0.47607421875],[0.988037109375,1.47607421875]) (ex)

[2]([0.2511518352207645,0.25115183522076507],[1.2511518352207642,1.2511518352207654]) (ex:improved)

ne_test: 49, ex_test: 3, ne: 23, ex: 2, giveup: 0

M. Kashiwagi (Waseda Univ. Verified Numerical Computation and kv Libra

Automatic differentiation(autodif)

e provide Bottom-Up type (forward mode) automatic differentiation.

#include <kv/autodif.hpp>
namespace ub = boost::numeric::
// definition of function
template <class T> ub::vector<T> func(const ub
i:vector<t>& x) {
ub::vector<T> y(2);

ublas;

y(0) = 2. * x(0) * x(0) = x(1) — 1.;
y(1) = x(0) + 0.5 % x(1) * x(1) — 2.;
return y;

}

int main()

{

ub::vector<double> vl, v2;
ub::vector< kv::autodif<double> > val, va2

ub:: matrix<double> m;

vl.resize(2);

vl(0) = 5.; vi(1l) = 6.;

// initialization

val = kv::autodif<double>::init(vl);

// call function

va2 = func(val);

// split the result

kv::autodif<double >::split(va2, v2, m);

// £(5, 6)

std :: cout << v2 << "\n";

// Jacobian matrix at (5, 6)
std ::cout << m<< "\n";

[2](299,21)
[2,2]((120,50) ,(1,6))

M. Kashiwagi (Waseda Univ.)

Verified Numerical Computation and kv Libra

(Mar. 15, 2025)

44 /94

Affine Arithmetic (affine)

Affine Arithmetic

o Affine arithmeric can supress overestimation of interval arithmetic.
Instead it takes more computation time.

@ Since dependency information with respect to other variables is held,
overestimation can be supressed.

@ All variables are expressed in affine form like

o+ x1€1 + X262 + - - - + Tpey -

g; are dummy variables which satisfy —1 < ¢; < 1 and the coefficients
x; have dependency information.

@ Every time a nonlinear operation such as multiplication, division or
mathematical function appears, the number of dummy variables
increases and the calculation speed slows down.

o Like as the interval, we can use dd or mpfr as well as double for
internal type of affine.
@ has a function to reduce the number of dummy variables.

. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Dummy variables ¢ express the dependency information

x = 1 +0.5e r = 1 +0.5¢;
y = 1 +0.5e9 y = 1 404e; +0.1e9

0] 1 0] 1

The ranges of x,y are the same, but their "joint range"” is different.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Conversion between interval

interval — affine

21, 7] S e
[I_Q x—2] To+xo To—x2
9

2 7 ©2

affine — interval

T =ag+ ai€1 + -+ ankp

n
= lag —r,a0+ 7], (r= Z|ai|)
i=1

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 47 /94

Linear Operation is easy

=20+ X1E€1+ "+ TpEn

Y=Y+ yie1+ -+ Yntn

Addition, Subtraction

zEy=(zoxyo)+ (z1E£y1)er+ -+ (Tn L Yn)en
rta=(rota)+txie]+ -+ Tpey

Constant Multiplication

ar = (axo) + (az1)er + - - + (axy)en

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Nonlinear Unary Operation (Mathematical Function)

f: unary operator such as exp,log,--- .
Consider Calculating z = f(x) for an affine variable x.

=0+ X1E1+ -+ TpéEn

© Calculate I (range of z) as follows:
n
I =[zg—r,20+7], 7= Z|xz|)
i=1

@ Calculate ax + b (linear approximation of f over I) and maximum
error § as follows:

0 =max|f(z) — (ax +)|
el

© Calculate the result z as follows:

z=a(xg+x161+ -+ Tpen) + b+ dent1

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Linear Approximation ax + b and Error ¢

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Nonlinear Binary Operation

For binary operator g(z,y), consider linear approximation ax + by + ¢ .
(Almost same as in the case of unary operator.)

Multiplication

z = yo(x — x0) + zo(y — Yo) + Toyo + rzrycnt1

n n
= woyo +) _(yoxi + Toys)ei + <Z !%\) <Z il > Ent1

i=1 i=1

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 51/94

Example of Affine Arithmetic

The QRT (Quispel-Roberts-Thompson) map

14+ axy,
o calculate recurrence formula: zp,4+1 = ——
Tpn—129,
e with 0 =2, @ = 2, x9p = 21 = 1 by interval arithmeric and affine
arithmetic.)
#include <kv/interval .hpp> #include <kv/affine . hpp>
#include <kv/rdouble.hpp> int main()
int main()
int i;
int i; kv::affine<double> x, y, z;
kv::interval <double> x, y, z; std::cout.precision(17);
std::cout.precision(17); = 1.
o= 1, y = 1.
y =1 for (i=2; i<=10000; i++) {
for (i=2; i<=10000; i+4) { z=(14+2%y)/ (x*y*y);
z=(14+2xy) / (x*xy=*y); std::cout << i << " " << to_linterval(z)
std:icout << i << " " << z << "\n"; << "\n";
X =y; X =y;
y =1z; y =z
} }
} }

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 52 /94

affine arithmetic

n interval arithmetic
2 [3,3] [3,3]
3 [0.77777777777777767,0.777777T7T77T777778] [0.777777777T77777756,0.77777777777777824]
4 [1.408163265306122, 1.4081632653061232] [1.4081632653061197, 1.4081632653061247]
5 [2.4744801512287302, 2.4744801512287369] [2.4744801512287271, 2.4744801512287414]
6 [0.68995395922102109, 0.68995395922102732] [0.6899539592210222, 0.68995395922102621]
7 [2.020393474742363, 2.0203934747424169] [2.0203934747423817, 2.0203934747423987]
8 [1.7898074714307314, 1.7898074714308816] [1.7898074714307978, 1.7898074714308153]
31 [0.70098916182277204, 0.70941982097935608] [0.70519175616865292, 0.70519175616868424]
32 [1.7816188152293368, 1.8444838202503787] [1.8127715215496742, 1.8127715215497711]
33 [1.890688867011997, 2.1073484458445711] [1.9960405520559754, 1.9960405520560838]
34 [0.58372124794988644, 0.81879304568504608] [0.69119381312156691, 0.69119381312160023]
35 [1.5341327531940911, 4.0942614522583929] [2.4982930525184534, 2.4982930525186054]
36 [0.29640395761996329, 6.6882779916662063] [1.3900085495715059, 1.390008549571586]
37 [0.0086967943592607538, 106.66548725824453] [0.78309678534845506, 0.7830967: 849637]
38 [1.3369859317919986 x 10’5, 9560542.5436595381] [3.0105168251706007, 3.0105168251708015]
39 [1.0257053348148149 x 10~ 16,1.229984619387229 x 1019 [0.98924416180811902, 0.98924416180817921]
40 [6.9138205018986439 X 10’46, 1.7488703313159241 X 1056] [1.0109923081577889, 1.0109923081578503]
41 [2.6581843623384974 x 10~ 122 7.1339291414655989 x 101°7] [2.9887738208443805, 2.9887738208445911]
42 [0, oo] [0.7726251804826496, 0.77262518048269758]
43 — [1.4265918581977079, 1.4265918581978075]
9999 — [0.76071510659932817, 0.76071510667899534]
10000 — [1.4727965248961243, 1.4727965251850226]

M. Kashiwagi (Waseda Univ.

Verified Numerical Computation a

1e+10 T

100000

1e-05 - /) B

1e-15 7/‘/ e |

1e-20 - 1

1625 | g]

16-30 [-]

(dd is the result by double-double (pseudo-quadruple precision) interval.)

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 20

Results (n < 10000)

1e+10 T

T
interval

affine -
100000 Bl

1e-05 |

1e-10 |

width

1e-15 4

1e-20 Bl

1e-25 4

1e-30 Bl

.
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n

M. Kashiwagi (Waseda Univ. Verified Numerical Computation a (Mar. 15, 21

Power Series Arithmetic (PSA)

@ PSA can be used for the verified algorithms of solving ordinary differential
equations, numerical integration, calculation of higher derivative, and so on.
@ Two types of PSA. n: fixed integer
Type-I PSA simply discard the terms higher than n.
Type-1l PSA include the influence of the terms higher than n into the interval
coefficient of ¢".

Example of PSA (mutiplication)
] (142t —3t%) x (1 —t+t%) \

Type-l1 PSA Type-Il PSA
not necessary to decide domain | domain = [0,0.1]
1+t— 482 1+t+[—4,-3.5)t

(142t -3t —t+2) =141t — 42 + 563 — 3¢
=1+t+ (—4+5t—3t)t2 €1+t +[—4,—3.5)t2

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Type-1 PSA

Power Series

To 4+ Tt + 2ot + - - + Tpt"

o four basic operations +, —, X, + between power series.
e mathematical functions (exp, log, etc and [) for power series.

@ leave the (< n)-th terms of result and discard the terms higher than
n.
@ almost same as:

o Mathematica's Series’
e Intlab’s taylor.
e automatic differentiation for higher order derivative.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Operation Rules of Type-1 PSA (1/4)

z(t) = o + z1t + Tt + - - + Tt™
y(t) = yo +yit + yat® + - + yut”

v

addition and subtraction

z(t) £y(t) = (vo £yo) + (z1 L y1)t + - (T £ yn)t"

example of addition
x(t) = 1+ 2t — 3¢°
y(t)=1—t+1t2

z(t) + y(t) =2+t — 22

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Operation Rules of Type-l PSA (2/

multiplication

z(t) x y(t) = 20 + z1t + - - - + zpt"
n
2k = Z TiYk—i
i=0

(stop at the nth-order term and do not calculate terms of order n + 1 and beyond.)

example of multiplication

Truncate
z(t) =1+ 2t — 3t°
yt)=1—t -+
z(t) x y(t) = 1+t — 4¢% + 53 — 3¢*
up to the second-order term, and let

z(t) x y(t) =1+t — 4¢°

be the result.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Operation Rules of Type-1 PSA (3/4)

Mathematical functions such as sin, etc
For function g, substitute input in the Taylor expansion of g at xg:

g(xo + z1t + -+ + xpt")

"1 . .
= gw0) + Y 79 (@o) (@t + -+ + aut")’
i=1

All additions and multiplications in above calculation are executed by the
Type-l PSA.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Operation Rules of Type-1 PSA (4/4)

x+y =z X (1/y) (reciprocal function and multiplication)

indefinite integral

/tx(t)dt = Dot + 242 e —m gt
0 2 n+1

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 61 /94

Type-1l PSA

Power Series

To + x1t + Tot? + - - + 2pt"

@ operations are defined on fixed finite closed set D = [t1,%2] 2 0 .

@ include the influence of the terms higher than n into the interval
coefficient of ™.

o all coefficients zg, - - - , x,, are interval.

@ however, in a typical case, zg,--- ,xy—1 are narrow intervals and z,
becomes wide interval.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Operation Rules of Type-Il PSA (1/5)

z(t) = o + z1t + Tt + - - + Tt™
y(t) = yo +yit + yat® + - + yut”

addition and subtraction

| .

z(t) £y(t) = (vo £yo) + (x1 L y1)t + - (T £ yn)t"

example of addition

x(t) = 1+ 2t — 3¢°
y(t)=1—t+1t2

z(t) + y(t) =2+t — 22

(addition and subtraction are exactly the same as in Type-lI PSA.)

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Operation Rules of Type-Il PSA (2/5)

multiplication

@ multiplication with no truncation

2n

z(t) X y(t) = 20 + 21t + - - - + 2ont

min(k,n)

2k = E TilYk—i

i=max(0,k—n)

@ Order Reduction from 2n to n.

Definition: Order Reduction from m to n

zo + x1t 4+ 2ot® + -+ + Tt = 20 + 21t +

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Operation Rules of Type-Il PSA (3/5)

example of multiplication
Set domain D = [0,0.1] .

z(t) =1+ 2t — 3t2
y(t)=1—t+1t?

z(t) x y(t) = 1+t — 4¢* + 53 — 3¢*
=1+ ¢+ (—4 + 5t — 3t%)¢2
€l+t+{-4+5t—3t|te0,01]}¢
=1+1t+ [—4,-3.5]¢

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Operation Rules of Type-Il PSA (4/5)

mathematical functions such as sin, etc

For function g, substitute input in the Taylor expansion of g at xy with a
remainder term:

g(xo + 1t + - - - + zpt")
n—1

1 . .
= g(@0) +) 9P (@o)(@rt + - + ut")’

i=1
tep}» (a1t 4o 2l

1 N

Bl () i

T n!g <hull (:L‘g, { let
i=0

All additions and multiplications in above calculation are executed by the

type-1l PSA.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Operation Rules of Type-Il PSA (5/5)

x+y=ux x (1/y) (reciprocal function and mulplication)

indefinite integral

/tx(t)dt = Dot + 242 e —m gt
0 2 n+1

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 67 /94

Verified Numerical Quadrature

Numerical quadrature on interval [x;, z; + At]

z;+ At
/ Ft)dt

[
is as follows:
@ Using order-n power series

z(t) =0+t (+0£7+---0t")
Calculate ,
) = [Flai-+ alt)de
0

by type-Il PSA with domain [0, At].
@ Let the calculation result y(t) be

y(t) = yit + yot® + - ypprt"

the integral value is obtained by y(At) .

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

How to control step size

€o: expected local error (e.g. machine epsilon)

@ Calculate Taylor expansion of the solution by Type-l PSA, and estimate
appropriate step size Aty using coefficients of the Taylor expansion. For
Taylor expansion

zo + 1t + Tot® 4+ -+ Tyt 2™,

estimate step size as:

1
n
o

Aty =

1 1
max(||zn—1[|"=T, [[25]/=)

@ calculate verified solution by Type-ll PSA using the step size Aty .
© Using ¢, which is the real error of the above verified solution, estimate new
step size At as:

At = Aty (%0) "

@ calculate verified solution by Type-ll PSA using the step size At; .

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 69 /94

Example of Verified Numerical Quadrature (1/3)

10 .
/ 2sm(x) da
o cos(z?)+142710

#include <iostream>
#include <kv/defint.hpp>

typedef kv::interval<double> itv;

struct Func {
template <class T> T operator() (const T& x) {
return sin(x) / (cos(xxx) + 1. 4+ pow(2., —10));

Is

int main() {
std :: cout. precision (17);

std ::cout << kv::defint_autostep(Func(), (itv)0., (itv)10., 10) << "\n";

M. Kashiwagi (Waseda Univ.)

Verified Numerical Computation and kv Libra

(Mar. 15, 2025)

Example of Verified Numerical Quadrature (2/3)

10 .
/ 2sm(az) By
o cos(z?)+14 2710

kv-0.4.41 [38.383526264535227,38.38352626464969]
intlab 9 [38.34845927756175, 38.41859325162576]
octave 3.8.1 38.3837105761501

Mathematica 10.1.0 0.0608979

matlab 2007b 38.383519835854528

keisan (Romberg) 38.324147930794

keisan (Tanh-Sinh) 38.24858948837754677984

keisan (Gauss-Legendre) 116.448156707725851273

intde2 by ooura 32.4641

python + scipy 36.48985372847387

CASIO fx-5800P 38.38352669

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Example of Verified Numerical Quadrature (3/3)

1000

integrand

-1000

T
integrand ——
step size -

0.1

0.01

0.001

0.0001

1e-05

M. Kashiwagi (Waseda Univ.)

10

step size

Solving Initial Value Problem of ODEs

d
d—f = f(z,t), =€ R.teR
z(to) = xo

v

Our Algorithm for Initial Value Problems

Forty <t1 <te<...

@ Power Series Arithmetic (PSA) based algorithm to calculate verified
value of z(t;+1) based on x(t;) . (1-step algorithm: verification
algorithm for small step size.)

@ Affine Arithmetic based algorithm to connect the solutions of 1-step
algorithm over long time while supressing inflation of interval width.

v,

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Overview of 1-step Method (1/3)

Consider calculcating the value of z(t.) based on the initial value v = z(t5).

Origin Shift and Picard’s fixed point method

t
;r:(t):v-l—/o Fla(t),t +ts)dt

(’UIZE(tS), te [Oate_ts})

Generating Taylor Expansion of the solution
Set power series variable Xo =v, T =t and set k =0
@ calculate the following by Type-l PSA with order k:

t
Xk+1 =U “|’/ f(anT‘i’ ts)dt
0

Q@ k=k+1.
repeat above procedure n times, then we can generate the order n Taylor
expansion of the solutions as X, .

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Overview of 1-step Method (

Verification of Existence of the solution
Set domain D = [0, ;41 — t;] for type-1l PSA, using the following order n Taylor
expansion generated by Type-l PSA:

Xp = 20 + 21t + Tot? + - - + 2t

and T = ¢,
@ Make candidate set Y,:

Yo = zo + z1t + 20t + - + Vot"

by inflating the coefficient of last term of X,,.

@ Calculate v + fot f(Ye, T + t)dt by Type-l1l PSA with order n and reduce the
order from n + 1 to n:

Y = zo 4 it + wot? 4 - + VN
Notice that the coefficients of Y upto order n — 1 become completely equal to

that of X,.
@ if V C V. then the solution exists in Y.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Overview of 1-step Method (3/3)

For example, we can make the candidate set which is expected to include
solution as follows:

Making Candidate Set

@ Cauculate v + fg f(Xy, T + ts)dt by Type-Il PSA with order n and
reduce the order fromn +1ton : Yy =x9 + a1t +--- + Vpt"

@ Set r = ||V — z,]|| and then candidate set V' is obtained as:
Vo =an+2r ([-1,1],...,[-1,1))7

(Let radius be twice of the Newton-like step.)

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Example of 1-step Method

d_x — g2 Order of Taylor Expansion: n = 2,
dt use 3-digit decimal number.

2(0)=1, te[0,0.]

(generating Taylor expansion by Type-| (generating candidate set) (verification of solution by Type-Il PSA)
PSA)
-x3) -v2)
1+ / —X5)dt 1+ / —-Y7)dt
Xo = 0 2 0 ¢

-1 +/t(7(1 4 £%)2yat =1—t+¢>+[-1.14, —0.786]¢>
X1 A

1+ /Ot(—Xg)dt
=1+ /:(—1)475 =1+ /Ot(—(l — 2t + [2.8,3]t%))dt

2 3
: =1—t+1t"+[-1,—-0.933]t Y =|1—t+][0.886, 1]¢2

reduce the order from 3 to 2:

reduce the order from 3 to 2:

Xo =1+ /t(fxﬂdt
0 because [0.886, 1] C [0.8, 1.2], true

2
Yo=1—t+[0.9,1]t
0 +I I solution exists in Y.

14 /(:(7(1 —02yar

because » = |[[0.9, 1] — 1|| = 0.1,

Y. =|1—t+[0.8,1.2]t3

—14 /Ot(—u —2t))at

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 20

Connecting 1-step method over long time (1/2)

For ODEs, flow map is the map which maps the value z(¢;) (initial value
at t = t5) to the value z(t.) (value of solution at ¢t = ¢.).

¢t57te : Rl — Rl, ¢t57te : ZL‘(ts) — x(te)

Variational Equation with respect to Initial Value

Let 2*(¢) be the solution of ODE with inital value v, by solving matrix
ODE:

%y(t) = fu(z*(t), t)y(t), yeRX
y(ts) = I, te [ts, te]

we can obtain Jacobian of flow map by ¢;_; (v) = y(t.)

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Connecting 1-step method over long time (2/2)

Let J; be an inclusion of the true solution at ;.

Mean Value Form

Pt ti (T) € Bt p,py (Mid () + @), 4, (Ji) (2 — mid(J;))

@ Direct calculation may cause the inflation of the interval width by
wrapping effect.

@ Use affine arithmetic to supress wrapping effect.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

How to control step size

€o: expected local error (e.g. machine epsilon)

@ Calculate Taylor expansion of the solution by Type-I PSA, and estimate
appropriate step size Aty using coefficients of the Taylor expansion. For
Taylor expansion

xo it + ot -y gtz

estimate step size as:

1
"
o

i N
max(||lzp—1[| =T, [2a ™)

calculate candidate set by Type-ll PSA using the step size Aty .
Using €, which is the newly mixed error when we use the candidate set,
estimate new step size At; as:

©0

An = a1 (27

@ calculate candidate set by Type-1l PSA using the step size Atq, and verify
existence of the true solution. If the verification fails, for example, halve the
step size.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Example: initial value problem (1/4)

van del Pol equation

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Example: initial value problem (2/4)

#include <kv/ode—maffine.hpp>
namespace ub = boost::numeric::ublas;
typedef kv::interval<double> itv;
class VDP { // define function object for right hand side of ODE
public:
template <class T> ub::vector<T> operator() (const ub::vector<T>& x, T t){
ub::vector<T> y(2);

y(0) = x(1);
y(1) = 1. % (1. — x(0)*x(0)) * x(1) — x(0);
return y;
}
it
int main()
{
ub::vector<itv> x;
itv end;
std :: cout. precision (17);
x.resize(2);
x(0) = 1.; // initial value
x(1) = 1.;
end = 100.; // end time
kv ::odelong_maffine(VDP(), x, itv(0.), end); // solve initial value problem (from 0 to end)
std :: cout << x << "\n";
}

[2]([2.007790480952114,2.007790480952139],[—0.056051438751153989, —0.056051438750559116])

M. Kashiwagi (Waseda Univ. Verified Numerical Computation and kv Libra

Example: initial value problem (3/4) (dense output)

dense output with stepsize 27%.

#include <kv/ode—maffine.hpp>
#include <kv/ode—callback .hpp>
namespace ub = boost::numeric:: ublas;
typedef kv::interval<double> itv;
class VDP {
public:
template <class T> ub::vector<T> operator() (const ub::vector<T>& x, T t){
ub::vector<T> y(2);
y(0) = x(1);
y(1) = 1. % (1. — x(0)*x(0)) * x(1) — x(0);
return y;
}
B
int main()
ub::vector<itv> x;
itv end;
std :: cout. precision (17);
x.resize(2);
x(0) = 1.
x(1) = 1;
end = 100.;
kv::odelong_maffine(VDP(), x, itv(0.), end, kv::ode_param<double>(), kv::
ode_callback_dense_print<double>(itv (0.), itv(pow(2., —4)))):
}

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 202

Example: initial value problem (4/4) (dense output

t: [—0,0]
[21([1 1],[1.1])
t: [0.0625,0.0625]
[2]([1.0604282381493324,1.0604282381493327],[0.93186430539999509,0.93186430539999521])
t: [0.125,0.125]
[2]([1.1162696582692208,1.1162696582692211],[0.8534995323034189,0.85349953230341902])
t: .1875,0.1875]
[2]([1.1669406889500346,1.1669406889500352],[0.76674349796008578,0.7667434979600859])
t: [0.25,0.25]
[2]([1.211981145751376,1.2119811457513768],[0.67368071112755956,0.6736807111275599])
omitted
t: [99.9375,99.9375]
[2]([2.0074651477352984,2.0074651477354078],[0.07045240241356479,0.070452402414533405])
t: [100,100
[2]([2.0077904809520377,2.007790480952215],[—0.0560514387514576,—0.05605143875025545])

o

(Mar. 15, 2

Example: boundary value problem (1/2)

M7 ()= i) =0
()=

0

¢o,p : flow map from 0 to p

p : period

B s : equation of Poincaré section

(x,y,p) : unknown variables

Verification of periodic solusion of van der Pol Equation (x = 1) using
Krawczyk Method for Poincaré Map (Poincaré section: x = 0). The
Verified period is

T € [6.6632868593231044, 6.6632868593231534]

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Example: boundary value problem (2/2)

#include <kv/poincaremap . hpp>
#include <kv/kraw—approx. hpp>

namespace ub = boost::numeric::ublas;
typedef kv::interval<double> itvd;
class VDP {

public

template <class T> ub::vector<T> operator() (ub::vector<T> x, T t){
ub::vector<T> y(2);

y(0) = x(1);
y(1) = 1. % (1. — x(0)*x(0)) * x(1) — x(0);
return y;
}
class VDPPoincareSection {
public
template <class T> T operator() (ub::vector<T> x){
Ty
y =x(0) — 0.;
return y;
}
s
int main()
{
ub::vector<double> x;
vector<itvd> ix;
out. precision (17);
VDPPoincareSection g;
kv:: PoincareMap<VDP, VDPPoincareSection , double> h(f, g, (itvd)0.);
x.resize(3); x(0) = 0.; x(1) = 1.; x(2) = 6.28;
kv:: krawczyk_approx(h, x, ix, 10, 0);
std::cout << ix << std::endl;
}

[3]([—5.4587345687103157e—30,5.458734568710315¢
—30],[2.1727136926224956,2.1727136926225979] ,[6.6632868593231044 ,6.6632868593231534])

M. Kashiwagi (Waseda Uni Verified Numerical Computation a

Finding all solutions of nonlinear equations (1/2)

2-transistor circiut equation with five solutions

1 —05 0 0 1079/0.99 x (exp(z1/0.053) — 1)
099 1 0 0 1079/0.5 x (exp(x2/0.053) — 1)
0 0 1 05| | 1072/0.99 x (exp(x3/0.053) — 1)
0 0 -099 1 1079/0.5 x (exp(x4/0.053) — 1)
4 -3 -2 1\ [—0.001 0
=3 3 1 0| | 0.000936 | |0
00 o 1 4 s e T —0001 | T o
1 0 -3 3/ \z 0.000936 0
X1, To, X3, x4 € [—10,10]

Yusuke Nakaya, Tetsuo Nishi, Shin'ichi Qishi, and Martin Claus: “Numerical
Existence Proof of Five Solutions for Certain Two-Transistor Circuit Equations”,
Japan J. Indust. Appl. Math. Volume 26, Number 2-3, pp.327-336, 2009

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 87 /94

Finding all solutions of nonlinear equations (2/2)

@ A conjecture "2-transistor circuits have at most three solutions.” was

known, but this paper gave an example with five solutions that

nagated the conjecture.

@ Using all solution program (allsol.hpp) in kv, the program executed
295688 non-existence test and 145259 existence test, and succeeded

in proving the existence of five solutions.

verified solutions

Z1

2

3

x4

(1) 0.70358963169344701,0.70358963169362677

[-0.72180712343566756,-0.72180712342886677]

0.74231647296775893,0.74231647296781967

[0.61988728360925959,0.61988728360955603]

2) 0.71990164129087852,0.71990164129099532!

[-0.003335867014043125,-0.0033358670081318586]

0.73551253992991871,0.73551253992997967

[0.57555293496204418,0.57555293496258942]

3) 0.74231647296775959,0.74231647296781911

[0.61988728360926281,0.61988728360955337]

0.70358963169344879,0.70358963169362488'

[-0.72180712343560172,-0.7218071234289427]

(4) 0.73551253992991894,0.73551253992997923

[0.57555293496204606,0.57555293496258542]

[0.7199016412908793,0.7199016412909951]

[-0.0033358670140009599,-0.0033358670081407915]

(5) [0.72928963256368528,0.72928963256369895]

[0.47145516180306784,0.47145516180350878]

[0.72928963256368528,0.72928963256369895]

[0.47145516180306701,0.47145516180350833]

M. Kashiwagi (Waseda Uni

Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Compile options of kv library

o (without compile options) use fesetround to change rounding mode.
It works in wide environments.

@ -DKV_FASTROUND use SSE2 (_mm_setcsr) to change rounding mode.
It works only in Intel x64 environment

@ -DKV_NOHWROUND don't use harware rounding change and emulate
directed rounding by using nearest rounding mode only. It works in
very wide environment, but slow.

@ -DKV_USE_AVX512 use AVX-512 to change rounding mode. Of
cource, it works only in the latest Intel CPU with AVX-512.

@ -DKV_USE_TPFMA use FMA for twoproduct.

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025) 89 /94

Comparison of Calculation Time by Finding All solutions of
“five-solution” Problem

Intel Core i9 7900X 3.3GHz/4.3GHz, Memory 128G
Ubuntu 16.04 LTS
gcc 5.4.0
v
Ccalculation Time
Accuracy Compile Option Calculation Time
without -DKV_USE_TPFMA ‘ with -DKV_USE_TPFMA
-03 10.81 sec
double -03 -DKV_FASTROUND 8.40 sec
-03 -DKV_NOHWROUND 19.91sec [12.68 sec
-03 -DKV_USE_AVX512 -mavx512f 5.55 sec
-03 54.10 sec 44 .94 sec
dd -03 -DKV_FASTROUND 46.08 sec 36.72 sec
-03 -DKV_NOHWROUND 185.7 sec 118.9 sec
-03 -DKV_USE_AVX512 -mavx512f 21.42 sec

N\

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Nobel Prize in Physics 2021

The Nobel Prize in Physics 2021 Hitpsfwwwnobelprize org/orizesfphysics202 summary
GL

VETENSKAPS
AKADEMIEN

Q THE 5 ocrose 202

NOBEL
PRIZE
The Nobel Prize n Physics 2021 Explore

The Nobel Prize in Physics
2 O 2 -l Scientific Background on the Nobel Prize in Physics 2021

“FOR GROUNDBREAKING CONTRIBUTIONS TO OUR
UNDERSTANDING OF COMPLEX PHYSICAL SYSTEMS”

The Nobel Committce for Physics

1l Niklas Elmehed © 1l Nikias Elmehed © 1l Niklas Elmehed ©
Nobel Prize Outreach Nobel Prize Outreach Nobel Prize Outreach
Syukuro Manabe Klaus Giorgio Parisi
Prize share: 1/4 Hasselmann Prize share: 1/2

Prize share: 1/4

176 202110127 21:50

M. Kashiwagi (Waseda Uni Verified Numerical Computation and kv Libra

Scientific Backgroud Document begins with

the topic of Lorenz equation and its initial value sensitivity as the origin of
complex systems.

upper and lower boundaries [97]. The model is X
ax
D sy-x 15
2 =).
ay
G =X(Ba=2)-Y and 10
dz
Z XY -2, 5
dat b
where X describes the intensity of convective motion, ¥ R ¢
is the temperature difference between ascending and de- 5 10 2
scending flow and Z is the deviation from linearity of the 5
vertical temperature profile. The control parameters are
the Prandtl Number, o, which is a property of the fluid, o
the Rayleigh Number, Ra, which is the dimensionless
buoyancy driving vertical fluid motions, and a constant s
factor 3, characterizing the domain geometry.
The Lorenz system acts as a rich toy model of low-
dimensional chaos. Since its origin the breadth and ex- .
tension of studies has been so broad [c.g., 103] it would FIG. 2. Plot of X() of the Lorenz system with (o, 8, Ra) =
be difficult to enumerate them all. Key here are the facts (10,8/3,24.9) in which the initial data for all three variables
that the solutions are bounded, (Fig. 1) and yet exhibit are 10 (blue) or 10.01 (red). The divergence of the two solu-
sensitive dependence on initial conditions (Fig. 2). tions with slightly different initial conditions begins at t =

this is sensitive dependence on initial conditions, often wi hlm-
sically referred to as the “Butterfly Effec

[Butterfly Effect] The blue graph (initial
value: 10) and the red graph (initial value:
10.01) show completely different trajectories

after a certain time.

M. Kashiwagi Verified Numerical Computation and (Mar. 15, 20

Recalculation of the trajectory with guaranteed accuracy

(FIG.2 of "Scientific background on the Nobel Prize in physics 2021")

15 4

10

s 4

=~ o

—s

—10 4

—a1s 4

LML L)

AL AL

(Verified Solution of Lorenz Equation calculated by kv library)

The error in numerical calculation is much larger than the error caused by the difference

of initial values!

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

Conclusion

@ Available to download at http://verifiedby.me/kv/.

@ Written in C+-+. The boost C++ Library is required.

@ Header-only. kv library is designed to work without "install” but only with
the header files in itself.

@ Open source. If we assert that the result of verified numerical
computation is ‘proof’, all programs used for computation must be public.

@ Data type of numbers in the calculation is not restrected to "double”.

Data type can be easily changed using "template” feature in C++.

(Data Type) double, interval (with many verified mathematical

functions), double-double, MPFR, complex, automatic differentiation,

affine arithmeric, Power Series Arithmeric (PSA), and these combinations.

o (Applications) verified solution of nonlinear equations by Krawczyk
method, finding all solutions of nonlinear equations, initial value problems
of ODE, boundary value problems of ODE, etc.

We hope you will use of kv library for your research!

M. Kashiwagi (Waseda Univ.) Verified Numerical Computation and kv Libra (Mar. 15, 2025)

http://verifiedby.me/kv/

