2017/08/31(木)C++で気軽にリアルタイムグラフ表示 (matplotlib.hpp)

動機

日頃、C++でいろいろ計算していて、計算結果をグラフにしたいことがよくあります。テキストで吐かせて、必要ならば加工して、gnuplotで表示というのが定番でしょうか。最近はpythonで動くmatplotlibを使うことも多いです。

計算が終わってからグラフにするならこれでいいのでしょうが、計算中に現在の状況をリアルタイムに見たい、ということもあります。30年前のBASICの時代なら、LINE (0,0)-(639,399)とかすればすぐに画面に線が出たので、こういうのがとても気軽に出来ましたが、今はなかなか面倒な気がします。誰もがOpenGLでさっと書ける、というわけにはいかないでしょう。

これを実現する方法として、あまり知られていませんがgnuplotをパイプで繋いでリアルタイム描画させる方法があります。例えば、「C言語でgnuplotを利用してグラフ表示」に例があります。kvライブラリにもひっそりとgnuplotを使ったライブラリが含まれています。しかし、この方法は描画するオブジェクトが増えると非常に遅くなってしまい、実用的とは言い難いものでした。

gnuplotでなくmatplotlibならいくらか速そうなので、それで出来ないかと以前から考えていました。で、pythonインタプリタをパイプで繋いでpythonコマンドを文字列で送り込む作戦で作ってみました。作ってみたら案外良さそうなので記事にしました。kvライブラリにも入れようかな。

プログラム

作ったファイルは一つ(matplotlib.hpp)です。
#ifndef MATPLOTLIB_HPP
#define MATPLOTLIB_HPP

#include <cstdio>

class matplotlib {
	FILE *p;

	public:

	bool open() {
		p = popen("python -c 'import code; import os; import sys; sys.stdout = sys.stderr = open(os.devnull, \"w\"); code.InteractiveConsole().interact()'", "w");
		if (p == NULL) return false;
		send_command("import matplotlib.pyplot as plt");
		send_command("import matplotlib.patches as patches");
		send_command("fig, ax = plt.subplots()");
		send_command("plt.show(block=False)");
		return true;
	}

	bool close() {
		send_command("plt.close()");
		send_command("quit()");
		if (pclose(p) == -1) return false;
		return true;
	}

	void screen(double x1, double y1, double x2, double y2, bool EqualAspect = false) const {
		if (EqualAspect == true) {
			fprintf(p, "ax.set_aspect('equal')\n");
		}
		fprintf(p, "plt.xlim([%.17f,%.17f])\n", x1, x2);
		fprintf(p, "plt.ylim([%.17f,%.17f])\n", y1, y2);
		fprintf(p, "plt.draw()\n");
		fflush(p);
	}

	void line(double x1, double y1, double x2, double y2, const char *color = "blue", const char *opt = "") const {
		fprintf(p, "ax.draw_artist(ax.plot([%.17f,%.17f],[%.17f,%.17f], color='%s', %s)[0])\n", x1, x2, y1, y2, color, opt);
		fprintf(p, "fig.canvas.blit(ax.bbox)\n");
		fprintf(p, "fig.canvas.flush_events()\n");
		fflush(p);
	}

	void point(double x, double y, const char *color = "blue", const char *opt = "") const {
		fprintf(p, "ax.draw_artist(ax.scatter([%.17f],[%.17f], color='%s', %s))\n", x, y, color, opt);
		fprintf(p, "fig.canvas.blit(ax.bbox)\n");
		fprintf(p, "fig.canvas.flush_events()\n");
		fflush(p);
	}

	void rect(double x1, double y1, double x2, double y2, const char *edgecolor = "blue", const char *facecolor = NULL, const char *opt = "") const {
		
		if (facecolor == NULL) {
			fprintf(p, "ax.draw_artist(ax.add_patch(patches.Rectangle(xy=(%.17f,%.17f), width=%.17f, height=%.17f, fill=False, edgecolor='%s', %s)))\n", x1, y1, x2-x1, y2-y1, edgecolor, opt);
		} else {
			fprintf(p, "ax.draw_artist(ax.add_patch(patches.Rectangle(xy=(%.17f,%.17f), width=%.17f, height=%.17f, fill=True, edgecolor='%s', facecolor='%s', %s)))\n", x1, y1, x2-x1, y2-y1, edgecolor, facecolor, opt);
		}
		fprintf(p, "fig.canvas.blit(ax.bbox)\n");
		fprintf(p, "fig.canvas.flush_events()\n");
		fflush(p);
	}

	void ellipse(double cx, double cy, double rx, double ry, const char *edgecolor = "blue", const char *facecolor = NULL, const char *opt = "") const {
		if (facecolor == NULL) {
			fprintf(p, "ax.draw_artist(ax.add_patch(patches.Ellipse(xy=(%.17f,%.17f), width=%.17f, height=%.17f, fill=False, edgecolor='%s', %s)))\n", cx, cy, rx*2, ry*2, edgecolor, opt);
		} else {
			fprintf(p, "ax.draw_artist(ax.add_patch(patches.Ellipse(xy=(%.17f,%.17f), width=%.17f, height=%.17f, fill=true, edgecolor='%s', facecolor='%s', %s)))\n", cx, cy, rx*2, ry*2, edgecolor, facecolor, opt);
		}
		fprintf(p, "fig.canvas.blit(ax.bbox)\n");
		fprintf(p, "fig.canvas.flush_events()\n");
		fflush(p);
	}

	void circle(double cx, double cy, double r, const char *edgecolor = "blue", const char *facecolor = NULL, const char *opt = "") const {
		ellipse(cx, cy, r, r, edgecolor, facecolor, opt);
	}

	void polygon(double *x, double *y, int n, const char *edgecolor = "blue", const char *facecolor = NULL, const char *opt = "") const {
		int i;

		fprintf(p, "ax.draw_artist(ax.add_patch(patches.Polygon((");
		for (i=0; i<n; i++) {
			fprintf(p, "(%.17f,%.17f),", x[i], y[i]);
		}
		
		if (facecolor == NULL) {
			fprintf(p, "), fill=False, edgecolor='%s', %s)))\n", edgecolor, opt);
		} else {
			fprintf(p, "), fill=True, edgecolor='%s', facecolor='%s', %s)))\n", edgecolor, facecolor, opt);
		}
		fprintf(p, "fig.canvas.blit(ax.bbox)\n");
		fprintf(p, "fig.canvas.flush_events()\n");
		fflush(p);
	}

	void save(const char *filename) const {
		fprintf(p, "plt.savefig('%s')\n", filename);
		fflush(p);
	}

	void send_command(const char *s) const {
		fprintf(p, "%s\n", s);
		fflush(p);
	}

	void clear() const {
		send_command("plt.clf()");
	}
};

#endif // MATPLOTLIB_HPP
以下は簡単なテストプログラム(test-matplotlib.cc)。
#include "matplotlib.hpp"

int main()
{
	matplotlib g;

	// initialize
	g.open();

	// set drawing range
	g.screen(0, 0, 10, 10);
	// aspect ratio = 1
	// g.screen(0, 0, 10, 10, true);

	g.line(1,1,3,4);
	g.line(1,2,3,5, "red");

	g.rect(4,6,5,8);
	g.rect(6,6,7,8, "green");
	g.rect(8,6,9,8, "black", "red");

	g.point(4,2);
	g.ellipse(8,2,2,1);
	g.circle(2,8,2);

	double xs[5] = {6., 7., 6., 5., 5.};
	double ys[5] = {4., 5., 6., 6., 5.};
	g.polygon(xs, ys, 5, "black", "yellow");

	g.line(1,3,3,6, "green", "alpha=0.2");
	g.line(1,4,4,5, "black", "alpha=0.5, linestyle='--'");
	g.point(4, 3, "red", "s=100");

	g.save("test.pdf");

	getchar();

	// finish drawing
	g.close();
}
普通にコンパイルして走らせると、matplotlibが使えるpythonがインストールされていれば
Screenshot.png

のように表示されます。非常に短いプログラムなのでソースを見るのが早いような気もしますが、以下、簡単に使い方を説明します。

基本

#include "matplotlib.hpp"

int main()
{
	matplotlib g;

	g.open();
	g.close();
}
これが最小限でしょうか。matplotlib.hppをインクルードし、matplotlibオブジェクトgを一つ作り、g.open()でウィンドウが開き、gに対していろいろ描画命令を発行し、g.close()でウィンドウを閉じます。

描画範囲

	g.screen(0, 0, 10, 10);
で、描画範囲を(x,y)=(0,0)と(x,y)=(10,10)を対角線とする領域に設定しています。
	g.screen(0, 0, 10, 10, true);
のようにすると、x座標とy座標のアスペクト比が1になります(正方形が正方形に描画される)。

線分

	g.line(1,1,3,4);
のようにすると点(1,1)から点(3,4)へ線分が引かれます。
	g.line(1,2,3,5, "red");
のように色を指定することも出来ます。色の指定方法は、"Specifying Colors"で詳細を見ることが出来ます。

長方形

	g.rect(4,6,5,8);
で、点(4,6)、点(5,8)を対角線とする長方形が描かれます。線分と同様に、
	g.rect(6,6,7,8, "green");
で色を指定できます。
	g.rect(8,6,9,8, "black", "red");
のように色を2つ指定すると、一つ目の色で枠線が描かれ、二つ目の色で中が塗りつぶされます。

	g.point(4,2);
(4,2)に点が打たれます。線分と同様に色を付けることも出来ます。

楕円

	g.ellipse(8,2,2,1);
中心が(8,2)、x方向の半径が2、y方向の半径が1であるような楕円を描画しています。長方形と同様に色を付けたり塗りつぶしたり出来ます。

	g.circle(2,8,2);
中心が(2,8)、半径が2の円を描画しています。長方形と同様に色を付けたり塗りつぶしたり出来ます。

多角形

	double xs[5] = {6., 7., 6., 5., 5.};
	double ys[5] = {4., 5., 6., 6., 5.};
	g.polygon(xs, ys, 5, "black", "yellow");
点(6,4),(7,5),(6,6),(5,6),(5,5)をこの順に結んだ五角形を表示しています。長方形と同様に色を付けたり塗りつぶしたり出来ます。

ファイルにセーブ

	g.save("test.pdf");
このように、その時点での画像をファイルにセーブできます。ファイル形式は拡張子で指定します。

画面消去

g.clear()で画面消去できます。座標系の設定もクリアされるようで、g.screen()からやり直す必要がありそう。

追加オプション

	g.line(1,3,3,6, "green", "alpha=0.2");
	g.line(1,4,4,5, "black", "alpha=0.5, linestyle='--'");
	g.point(4, 3, "red", "s=100");
matplotlibには、線の種類や線の太さなど、更に無数のオプションがあります。それらを全て引数として用意するのは面倒だったので、最後の引数に文字列で書くとそれがそのままmatplotlibの該当コマンドのオプションとして渡されるようにしました。上の例は、
  • alpha=0.2として薄く表示
  • alpha=0.5として、更に線種を変更
  • 点を大きく
したものです。g.send_command()を使うと任意のpythonコマンドを実行できますので、その気になれば更に複雑なことも可能です。

技術的な細かいこと

  • 最初にpopenしてるところ、単にpythonインタプリタを呼ぶのでなく妙な引数がついてますが、自分の環境ではpythonインタプリタをそのまま呼んだ場合標準入力を一行ずつ読んでくれなかったので、小細工しました。もっとスマートな方法募集中です。
  • 普通に書くと新しく何かを描画する毎に全体を再描画してしまいgnuplotと同様遅くなってしまったので、blittingとかいう技を使って再描画を抑制しているつもりです。しかし、matplotlibの構造を全く知らずに適当に実験しながら作ったので、とんでもなく的外れなことをしているかもしれません。
  • C++とlibpythonをリンクしてpythonインタプリタ自身をプログラム中に取り込んでしまう方法でも同じことが出来ます。しかし、コンパイル時のオプションが必要だったり気軽さが失われてしまうのと、描画の重さに比べてパイプのオーバーヘッドはあまり大きく無さそうなので、気軽なパイプで作ってみました。

オマケ

最後にオマケでLorezn方程式の初期値問題の解を計算しながら描画する例です。boost.ublasを使っています。
#include <boost/numeric/ublas/vector.hpp>
#include "matplotlib.hpp"

namespace ub = boost::numeric::ublas;

template <class T, class F>
void rk(F f, ub::vector<T>& init, T start, T end) {

	ub::vector<T> x, dx1, dx2, dx3, dx4, x1, x2, x3;

	T t = start;
	T dt = end - start;

	x = init;
	dx1 = f(x, t) * dt;
	x1 = x + dx1 / 2.;
	dx2 = f(x1, t + dt/2.) * dt;
	x2 = x + dx2 / 2.;
	dx3 = f(x2, t + dt/2.) * dt;
	x3 = x + dx3;
	dx4 = f(x3, t + dt) * dt;

	init = x + dx1 / 6. + dx2 / 3. + dx3 / 3. + dx4 / 6.;
}

struct Lorenz {
	template <class T> ub::vector<T> operator() (const ub::vector<T>& x, T t){
		ub::vector<T> y(3);

		y(0) = 10. * ( x(1) - x(0) );
		y(1) = 28. * x(0) - x(1) - x(0) * x(2);
		y(2) = (-8./3.) * x(2) + x(0) * x(1);

		return y;
	}
};

int main()
{
	int i, j;
	ub::vector<double> x, x_new;
	double t, t_new, dt;
	const char *colors[3] = {"blue", "red", "green"};

	matplotlib g;

	g.open();

	g.screen(0., -30., 10., 50.);

	x.resize(3);
	x(0) = 15.; x(1) = 15.; x(2) = 36.;
	t = 0.;
	dt = pow(2., -5);

	for (i=0; i < (1 << 5) * 10; i++) {
		x_new = x;
		t_new = t + dt;
		rk(Lorenz(), x_new, t, t_new);
		for (j=0; j<3; j++) {
			g.line(t, x[j], t_new, x_new[j], colors[j]);
		}
		x = x_new;
		t = t_new;
	}

	getchar();
	g.close();
}
これを実行すると、
Screenshot-lorenz.png

のようなグラフが計算しながら描かれます。

おわりに

短いのでコピペでも十分でしょうけど、ここに載せた3つのプログラムをzipであげておきます。

matplotlib.zip

見れば分かるように単純なことしかしていませんので、C++以外の他の言語でも似たようなことは簡単に出来ると思います。

お役に立てば幸いです。

2019年4月10日追記

rectがバグっていたので直しました。

2017/08/23(水)kv-0.4.42

kvライブラリを0.4.42にアップデートしました。

今回は大きな変更はありません。
  • コンパイル時にマクロKV_USE_TPFMAを定義すると、twoproductの計算にfma命令を使うようになる。
  • dka.hpp (Durand Kerner Aberth法) の重解時の安定性が向上。
  • 精度保証付き数値計算とkvライブラリの概要を説明するスライドを掲載
くらいです。概要スライドは結構手間が掛かっていますので、読んで頂ければ幸いです。概要スライドの英語版も9割がた出来ているのですが、掲載は次回以降に。

2017/08/08(火)二重振り子の精度保証付き数値計算

少し前(5月頃)、二重振り子のシミュレーション動画がtwitterで流行したことがありました。最初のtweetがこれ。
わずかに異なる初期値をもった50本の二重振り子のシミュレーションを動画にしたもので、途中まで完全に重なっているように見える振り子が一気にバラける様子がとても面白い。

次は、それを三重振り子にしたもの。
gmpを用いて高精度計算をしており、ねとらぼで記事にもなりました。

どちらも常微分方程式の計算にはルンゲクッタ法を用いています。わずかな初期値のずれが後に大きな違いをもたらすことがとてもよく分かる動画ですが、一方で、ルンゲクッタ法で計算された値も真値とはわずかにずれており、当然その誤差も同様に後で大きな違いをもたらすことになります。だとすると、果たして意味のある計算になっているのかという疑問が生じます。

そこで、二重振り子の軌道を精度保証付きで計算し、ルンゲクッタ法とどのくらいずれるのか検証してみました。そのtweetがこれです。
このように、4次のルンゲクッタ法(刻み幅2^{-7})と精度保証付き計算とを比較してみると、t=8あたりから先は完全に違う軌道になってしまっていることが分かりました。

以下では、twitterに書けなかった細かい情報を備忘録も兼ねて書いておこうと思います。

使った式は、
\begin{align*} & (m_1+m_2)l_1\ddot{\theta_1} + m_2l_2\ddot{\theta_2}\cos(\theta_1-\theta_2) + m_2l_2\dot{\theta_2}^2\sin(\theta_1-\theta_2) +(m_1+m_2)g \sin \theta_1= 0 \\ & l_1l_2\ddot{\theta_1}\cos(\theta_1-\theta_2) + l_2^2\ddot{\theta_2} -l_1l_2\dot{\theta_1}^2\sin(\theta_1-\theta_2) + g l_2 \sin \theta_2= 0 \end{align*}
のようなものです(Wikipediaの記事と全く同じです)。舞台設定は
bbb.jpg

の通り。この式を\ddot{\theta_1}, \ddot{\theta_2}の2変数連立一次方程式と見て解いて正規形に直し、\dot{\theta_1}=\phi_1, \dot{\theta_2}=\phi_2のように置き直して1階4変数の常微分方程式とします。パラメータは
\begin{align*} m_1 &= m_2 = 1 \\ l_1 &= l_2 = 1 \\ g &= 9.8 \\ \end{align*}
とし、初期値は
\begin{align*} \theta_1(0) &= \frac{3}{4}\pi \\ \theta_2(0) &= \frac{3}{4}\pi \\ \dot{\theta_1}(0) &= 0 \\ \dot{\theta_2}(0) &= 0 \end{align*}
としました。

kvライブラリを用いて、この初期値問題を精度保証付きで計算するプログラムと、4次のルンゲクッタ法で計算するプログラムを書きました。両方のプログラムをzipで上げておきます ( doublependulum.zip )。4次のルンゲクッタ法の刻み幅は固定で2^{-7}としました。精度保証付きの方は全ての時刻の解を多項式の形で連続的に計算しているのですが、ルンゲクッタ法と同じ2^{-7}の刻み幅で密出力させています。この計算結果を動画にしたものが、先のtweetというわけです。

プログラムを走らせて得られた生データを上げておきます ( doublependulum-result.zip )。t=1のときの両プログラムのデータを抜き出すと、
\theta_1\theta_2
kv[ 0.14046540255551162,0.14046540255558421][ -0.71766989300731332,-0.71766989300724726]
rk40.1404652582264235-0.71766977132932186
となっていました。精度保証付きの方は全てのデータを区間で保持しており、この閉区間の中に真の解が存在することが数学的に保証されています。これを見ると、精度保証付き計算ではこの時点で13桁の精度を保っていますが、ルンゲクッタ法はすでに6桁程度しか精度がないことが分かります。例えば最初のtweetの動画では初期値に10^{-12}の摂動を与えていますが、t=1の時点ですでにルンゲクッタ法そのものの誤差の方が支配的になっているとするならば、本当に初期値の摂動の影響を計算していると言えるのでしょうか。

このデータをグラフにしてみました。
theta.png

t=8付近でずれが目に見えるようになり、そのあとは完全に異なる軌道を描いています。

精度保証付き計算もいつまでも高精度を保っていられるわけではなく、t=17付近を見るとわずかにグラフに幅があるのが分かります。この後一気に区間幅が爆発し、t=17.05付近で計算不能に陥ります。この精度保証付き計算プログラムはgmpのような高精度数を使用しているわけではなく、内部で使っているのは普通のdoubleです。試しに内部の数値型をdd(擬似4倍精度数)に変えてみたところ、t=30くらいまでは普通に破綻すること無く計算出来ました。

二重振り子の動画を見るだけなら、精度保証してもしなくても動きの「印象」はほとんど変わらないのですが、カオス系に対して数値シミュレーションで何らかの数学的な結論を得ようと思うならば、誤差が明確に把握できる精度保証付き数値計算は必須だと思います。みなさま、精度保証付き数値計算を使いましょう!
OK キャンセル 確認 その他